æternity Documentation Hub
AeternityGitHub
  • æternity Hub
  • Welcome to æternity documentation
  • Getting Started
    • What is æternity?
    • How to Use Aeternity
  • æternity core concepts
    • Introduction
    • æternity Protocol
      • æternity Coin
      • Fast Æternity Transaction Engine (FATE VM)
      • æternity Nodes
        • Node architecture
        • Node types
        • Node Roles
      • Transactions
        • Types of transactions
        • Transaction Lifecycle
        • Transaction Fees
        • Meta-transactions and Generalized Accounts
        • State Channel Transactions
      • Networks
      • Consensus Mechanisms
        • Next Generation Nakamoto Consensus (Bitcoin-NG)
        • Cuckoo Cycle Proof of Work
        • Hyperchains and Delegated Proof of Stake
        • Governance and Weighted Coin Voting
      • State Channels
      • Oracles
      • Aeternity Naming System (AENS)
    • Hyperchains
      • Hyperchains Whitepaper
    • Aeternity Governance
    • Aeternity Foundation
  • aeternity user tools and services
    • Introduction
    • Run an æternity node
    • Hyperchains web app
    • Hyperchains Bridge app
    • Mine aeternity coin
    • Superhero DEX
    • Superhero Wallet
    • ærc Bridge
    • Make an NFT
    • aepps: decentralized applications on æternity
    • æScan: æternity blockchain explorer
  • æternity Developer tools
    • Quick Start Guide
      • Development Environment Setup
      • Essential Tools Overview
      • Æternity Stack
      • First Steps in Development
    • Protocol
      • Core Protocol Components
        • æternity Consensus Protocol
        • Generalized Accounts
        • Smart Contracts
          • FATE VM
          • Smart contract languages
            • æternity Sophia Language
              • In-Depth Overview
              • Sophia Compiler
              • Sophia Visual Studio
              • Sophia http
              • æREPL
            • Solidity
          • Contract Transactions
        • State Channels
        • Oracles
      • Network Layer
        • Nodes
        • Sync
        • Gossip
        • Stratum
      • Utility Features
        • æternity Naming System (AENS)
        • Seralization Formats
    • æternity Sophia Language
      • In-Depth Overview
      • Sophia Compiler
      • Sophia Visual Studio
      • Sophia http
      • æREPL
    • Development Infrastructure
      • CLIs
      • SDKs and APIs
        • Javascript/Typescript SDK
        • Java SDK
        • Outdated SDKs
        • Node API reference
      • Middleware
      • Testing and Deployment
        • æproject
        • Testnets and Faucet
    • Token Standards
    • Aepps: Building apps on Aeternity
      • Boiler Plates
        • Angular Boiler Plate
        • React JS BoilerPlate
        • Vue BoilerPlate
    • Data and analytics
      • æScan
    • ÆRC Bridge
  • Hyperchains
    • Hyperchains Development Guide
    • Hyperchains Bridge
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. æternity Developer tools
  2. Protocol
  3. Core Protocol Components
  4. Smart Contracts

FATE VM

PreviousSmart ContractsNextSmart contract languages

Last updated 13 days ago

Was this helpful?

FATE (Fast Aeternity Transaction Engine) is æternity's custom-built virtual machine, designed specifically to execute Sophia smart contracts with enhanced security and efficiency. It uses high-level instructions that operate directly on the blockchain's state tree, enabling native integration with protocol features like oracles and state channels. FATE's functional approach, strong typing, and arithmetic safeguards prevent common smart contract vulnerabilities, while its efficient design results in smaller contract sizes and lower gas costs compared to traditional blockchain virtual machines.

The FATE documentation provides detailed specifications of FATE's architecture, including its instruction set, type system, and security features. You'll find technical explanations of how FATE integrates with the blockchain's state tree, handles contract execution, and implements its efficient computational model. The documentation also covers FATE's approach to gas calculation and resource management, essential for developers optimizing their smart contracts.

Cover

FATE documentation

Cover

FATE extensions