æternity Documentation Hub
Aeternity.comAeternity GitHub
  • æternity Hub
  • Developer Documentation
  • Aeternity Expansions
    • PULL_REQUEST_TEMPLATE
    • AEX X
    • AEXS
      • AEX 1
      • aex-10
      • AEX 11 Fungible Token Standard
      • AEX-130: æpps Metadata Format Specification
      • aex-141
      • AEX 2
      • AEX-3
      • AEX-4
      • AEX 5
      • AEX 7
      • AEX 8
      • aex-9
    • .github
      • ISSUE_TEMPLATE
        • aexpansion
  • AeMdw - Aeternity Middleware
    • Changelog
    • docs
      • AE MDW Architecture
      • AeMdw Hyperhain Setup Documentation
      • AeMdw Docker Setup Documentation
  • Æternity <> Ethereum Bridge
    • Changelog
  • aepp-cli-js
    • CHANGELOG
    • Contributor guide
    • reference
    • user-guide
    • .github
      • ISSUE_TEMPLATE
  • Hyperchain Bridge
    • Changelog
  • æternity's JavaScript SDK
    • Installation
      • Changelog
      • Compatibility Table
      • Quick Start
      • Transaction options
      • Development
        • Releases
      • guides
        • The range of possible address length
        • AENS (æternity naming system)
        • Batch Transactions
        • How to build a wallet
        • Connect an æpp to a wallet
        • Contract Events
        • Contracts
        • Error Handling
        • JWT usage
        • Ledger Hardware Wallet
        • Low vs High level API
        • Aeternity snap for MetaMask
        • Oracles
        • PayingForTx (Meta-Transactions)
        • Typed data hashing and signing
        • Usage with TypeScript
        • migration
          • Migration to 10.0.0
          • Migration to 11.0.0
          • Migration to 12.0.0
          • Migration to 13.0.0
          • Migration to 14.0.0
          • Migration to 7.0.0
          • Migration to 9.0.0
      • tutorials
        • vuejs
          • Vue.js HelloWorld
    • Examples
      • How to connect wallet to æpp using æternity's JS SDK
        • Sample æpp for contracts
        • iframe-based wallet
        • WebExtension-based wallet
    • .github
      • ISSUE_TEMPLATE
        • bug_report
        • feature_request
  • AEproject
    • Changelog
    • docs
      • Quick Start
      • AEproject Library
      • Migration from 3.x.x to 4.x.x
      • Migration from 4.x.x to 5.x.x
      • Upcoming Version Support
      • cli
        • Local Environment
        • Project Initialization
        • Unit Testing
    • .github
      • ISSUE_TEMPLATE
        • bug_report
        • feature_request
  • aerepl
    • Changelog
  • aescan
    • Changelog
    • Contributor Covenant Code of Conduct
    • Aescan Contributing Guide
    • LICENSE
    • .github
      • pull_request_template
      • ISSUE_TEMPLATE
        • bug_report
        • feature_request
    • docs
      • BRANCHING_STRATEGY
  • Sophia Support for Visual Studio Code
    • Changelog
  • aesophia
    • Changelog
    • Contributing to Sophia
    • docs
      • aeso_aci
      • aeso_compiler
      • Introduction
      • sophia
      • Contract examples
      • Features
      • Standard library
      • Syntax
  • aesophia_cli
    • Changelog
  • aesophia_http
    • Changelog
  • Æ Studio - Formerly known as 🔥 Fire Editor ! Aeternity's easy to use editor for writing smart contr
    • ideas
  • aeternity
    • .github
      • The Æternity Code of Conduct
      • Contributing to the Aeternity node
      • ISSUE_TEMPLATE
        • bug_report
        • feature_request
    • Welcome to Aeternity node documentation
      • Summary
      • Node API
      • Introduction
      • Build from source
      • Configuration
      • CUDA Miner
      • debian_ubuntu_packaging
      • Docker
      • Fork resistance in Aeternity nodes
      • Garbage Collection
      • Hacking the Aeternity Codebase
      • Hardware Requirements
      • hyperchains
      • Installation
      • Network Monitoring
      • Operation
      • Rebar Quick Guide
      • Stratum
      • Testing
      • Update
      • release-notes
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • About this release
        • next-ceres
          • GH-3706-micro_block_gas_limit_used_gas
          • GH-4009-allow_contract_call_by_name
          • GH-4056-add_raw_data_pointers_to_AENS
          • GH-4080-wildcard_aens_delegation_signature
          • GH3417-tamper_protection_on_ga_meta_tx
          • aega_only_allow_attach_for_fresh_accounts
          • aens_auction_adjustments
          • aens_preclaim_optional
          • deprecate_swagger
          • fate_extensions
        • next
          • GH-3088-db_direct_access-as-default
          • GH-4087_http_endpoint_info_inner_txs
          • GH4157-control-mempool-sync-start
    • Emergency patching of OTP modules
    • rosetta
    • apps
      • aehttp
        • priv
          • rosetta_README
    • data
      • aecore
        • Token migration contract
  • Hyperchains whitepaper
    • Hyperchains: Bridging Security and Scalability Through Periodic Synchronization
    • LICENSE
    • Periodically-Syncing-HyperChains
    • generations
    • Glossary
    • Hyperchain Properties
    • staking
  • æternity protocol
    • æternity naming system
    • Gossip
    • Stratum
    • SYNC
    • Serialization formats
    • State Channels
      • Off-chain
      • On-chain
      • Authentication
      • Channel off-chain state
    • æternity consensus protocol
      • Bitcoin-NG for æternity
      • Coinbase at height
      • consensus
      • Coins locking
    • Smart Contracts
      • The æternity Ethereum virtual machine (AEVM)
      • contract_state_tree
      • Contract Transactions
      • Virtual machines on the æternity blockchain
      • contracts
      • Events
      • fate
      • The Solidity Language
      • sophia
      • sophia_stdlib
    • Generalized accounts
      • Generalized accounts - explained
      • generalized_accounts
    • Oracles
      • Oracle life cycle examples
      • Oracle state tree
      • Oracle transactions
      • oracles
    • Sync
      • P2P messages
      • Mempool/TX-pool synchronization
    • node
      • æternity node API
        • Account management - intended usage
        • Encoding scheme for API identifiers and byte arrays
        • State channel WebSocket API
        • Channels - intended usage
        • Contracts - intended usage
        • Mining - intended usage
        • Naming System - intended usage
        • Oracles - intended usage
        • Spending coins - intended usage
        • examples
          • æternity node channel WebSocket API examples
            • json-rpc
              • sc_ws_basic_open_close
              • sc_ws_basic_open_close_server
              • sc_ws_broken_open_params
              • sc_ws_close_mutual
              • sc_ws_close_solo
              • sc_ws_leave_reconnect
              • sc_ws_leave_reestablish
              • sc_ws_leave_reestablish_responder_stays
              • sc_ws_leave_reestablish_wrong_fsm_id
              • sc_ws_min_depth_is_modifiable
              • sc_ws_min_depth_not_reached_timeout
              • sc_ws_opening_ping_pong
              • sc_ws_reconnect_early
              • sc_ws_slash
              • sc_ws_snapshot_solo
              • sc_ws_timeout_open
              • sc_ws_update_with_meta
              • abort_updates
                • sc_ws_abort_deposit
                • sc_ws_abort_offchain_update
                • sc_ws_abort_settle
                • sc_ws_abort_shutdown
                • sc_ws_abort_slash
                • sc_ws_abort_snapshot_solo
                • sc_ws_abort_withdraw
                • sc_ws_can_not_abort_while_open
              • assume_min_depth
                • sc_ws_basic_open_close
              • both_sign
                • init_per_group
                • conflicts
                  • sc_ws_conflict_deposit_and_offchain_update
                  • sc_ws_conflict_two_deposits
                  • sc_ws_conflict_two_offchain_updates
                  • sc_ws_conflict_two_withdrawals
                  • sc_ws_conflict_withdrawal_and_deposit
                  • sc_ws_conflict_withdrawal_and_offchain_update
              • changeable_fee
                • sc_ws_optional_params_close_solo
                • sc_ws_optional_params_create
                • sc_ws_optional_params_deposit
                • sc_ws_optional_params_settle
                • sc_ws_optional_params_slash
                • sc_ws_optional_params_snapshot
                • sc_ws_optional_params_withdrawal
                • sc_ws_set_fee_close_mutual
                • sc_ws_set_fee_close_solo
                • sc_ws_set_fee_create
                • sc_ws_set_fee_deposit
                • sc_ws_set_fee_settle
                • sc_ws_set_fee_slash
                • sc_ws_set_fee_snapshot
                • sc_ws_set_fee_withdrawal
              • changeable_fee_higher_than_gas_price
                • sc_ws_optional_params_close_solo
                • sc_ws_optional_params_create
                • sc_ws_optional_params_deposit
                • sc_ws_optional_params_settle
                • sc_ws_optional_params_slash
                • sc_ws_optional_params_snapshot
                • sc_ws_optional_params_withdrawal
              • changeable_fee_lower_than_gas_price
                • sc_ws_optional_params_close_solo
                • sc_ws_optional_params_create
                • sc_ws_optional_params_deposit
                • sc_ws_optional_params_settle
                • sc_ws_optional_params_slash
                • sc_ws_optional_params_snapshot
                • sc_ws_optional_params_withdrawal
              • changeable_gas_price
                • sc_ws_optional_params_close_solo
                • sc_ws_optional_params_create
                • sc_ws_optional_params_deposit
                • sc_ws_optional_params_settle
                • sc_ws_optional_params_slash
                • sc_ws_optional_params_snapshot
                • sc_ws_optional_params_withdrawal
              • changeable_nonce
                • sc_ws_optional_params_fail_close_mutual
                • sc_ws_optional_params_fail_close_solo
                • sc_ws_optional_params_fail_create
                • sc_ws_optional_params_fail_deposit
                • sc_ws_optional_params_fail_force_progress
                • sc_ws_optional_params_fail_settle
                • sc_ws_optional_params_fail_slash
                • sc_ws_optional_params_fail_snapshot
                • sc_ws_optional_params_fail_withdrawal
              • continuous
                • init_per_group
                • sc_ws_deposit
                • sc_ws_failed_update
                • sc_ws_generic_messages
                • sc_ws_ping_pong
                • sc_ws_update_conflict
                • sc_ws_withdraw
              • contracts
                • init_per_group
                • sc_ws_basic_contracts
                • sc_ws_environment_contract
                • sc_ws_nameservice_contract
                • sc_ws_oracle_contract
                • sc_ws_remote_call_contract
                • sc_ws_remote_call_contract_refering_onchain_data
                • sc_ws_wrong_call_data
              • force_progress
                • sc_ws_force_progress_based_on_offchain_state
                • sc_ws_force_progress_based_on_onchain_state
              • only_one_signs
                • init_per_group
                • sc_ws_conflict_on_new_offchain
                • sc_ws_conflict_snapshot_and_offchain_update
                • conflicts
                  • sc_ws_conflict_deposit_and_offchain_update
                  • sc_ws_conflict_two_deposits
                  • sc_ws_conflict_two_offchain_updates
                  • sc_ws_conflict_two_withdrawals
                  • sc_ws_conflict_withdrawal_and_deposit
                  • sc_ws_conflict_withdrawal_and_offchain_update
              • reconnect
                • sc_ws_basic_client_reconnect_i
                • sc_ws_basic_client_reconnect_i_w_reestablish
                • sc_ws_basic_client_reconnect_r
              • with_meta
                • init_per_group
                • sc_ws_deposit
                • sc_ws_remote_call_contract
                • sc_ws_withdraw
              • generalized_accounts
                • both
                  • sc_ws_basic_open_close
                • initiator
                  • sc_ws_basic_open_close
                • responder
                  • sc_ws_basic_open_close
  • Superhero Wallet
    • Changelog
    • Contributing & Guidelines
    • docs
      • Deep link URL Schema
    • .github
      • ISSUE_TEMPLATE
        • bug_report
        • feature_request
  • aerepl-web-bridge
    • AereplApi
    • aerepl_components
Powered by GitBook
On this page
  • Leader election
  • Synchronization
  • Pinning
  • Non-productive stakers
  • Parent chain compatibility

Was this helpful?

Export as PDF
  1. Hyperchains whitepaper

Hyperchain Properties

PreviousGlossaryNextstaking

Last updated 22 days ago

Was this helpful?

Here we summarize some properties the should hold for hyperchains. These properties are input to later test cases.

Leader election

  1. Leaders election is deterministic from a specific random seed, obtained from parent chain entropy.

  2. In child generations, the leaders are chosen fairly. That is, the distribution of stake is similar to the distribution of chosen leaders.

The first property is rather straightforward to test, but the second one is a statistical property and needs a bit of thinking.

Preparation of that work is implementing a small algorithm for weighted random drawings based upon.

With some straightforward Erlang code, it can already be spotted that there is a challenge in decising that an algorithm is good enough and selecting a good enough algorithm. For example, a rather naive implementation seems to work well if we have few stake holders all with a larger set of coins.

89> prob:distribution(prob:select_stakers(10000, [{thomas, 80}, {hans, 10}, {erik, 10}])).
[{thomas,0.8103},{hans,0.0965},{erik,0.0932}]
90> prob:distribution(prob:select_stakers(10000, [{thomas, 80}, {hans, 10}, {erik, 10}])).
[{thomas,0.7957},{erik,0.1053},{hans,0.099}]

If thomas has 80 percent of the coins and hans and erik 10 percent each, then with a client generation length of 10000 blocks, we spot that thomas gets to produce around 8000 of those blocks and hans and erik between 932 and 1053. We need criteria to determine whether this is good enough.

But even if this might be good enough, what about a situation in which we have 100 users that have a very small stake. Do they get chosen at all? What if the generation length is 100, do they then get chosen reasonably well in 10 generations of 100 long?.

108> prob:distribution(prob:select_stakers(100, [{thomas, 800}, {hans, 80}, {erik, 80}] ++ [{N, 1} || N <- lists:seq(1,40)])).
[{thomas,0.84},{erik,0.09},{hans,0.05},{31,0.01},{37,0.01}]
109> prob:distribution(prob:select_stakers(100, [{thomas, 800}, {hans, 80}, {erik, 80}] ++ [{N, 1} || N <- lists:seq(1,40)])).
[{thomas,0.86},{hans,0.06},{erik,0.06},{19,0.01},{23,0.01}]
110> prob:distribution(prob:select_stakers(100, [{thomas, 800}, {hans, 80}, {erik, 80}] ++ [{N, 1} || N <- lists:seq(1,40)])).
[{thomas,0.77},
 {erik,0.09},
 {hans,0.07},
 {7,0.02},
 {14,0.02},
 {9,0.01},
 {24,0.01},
 {34,0.01}]


111> prob:distribution(prob:select_stakers(10000, [{thomas, 800}, {hans, 80}, {erik, 80}] ++ [{N, 1} || N <- lists:seq(1,40)])).
[{thomas,0.808},
 {hans,0.0773},
 {erik,0.0769},
 {18,0.0017},
 {7,0.0016},
 {22,0.0015},
 {33,0.0015},
 {14,0.0015},
 {13,0.0014},
 {11,0.0013},
 {15,0.0012},
 {39,0.0011},
 {40,0.0011},
 {1,0.0011},
 {35,0.0011},
 {30,0.0011},
 {25,0.001},
 {3,0.001},
 {2,0.001},
 {32,0.001},
 {5,0.001},
 {4,0.0009},
 {28,0.0009},
 {29,0.0009},
 {19,0.0009},
 {17,0.0009},
 {27,0.0009},
 {34,...},
 {...}|...]

We need a property to test this for different implementations to help choose a correct one.

Synchronization

  1. Over a number of parent chain generations that together have the expected durations, the child chain generations are in sync.

  2. The child chain can adapt to the block production time of the parent chain by changing 'child generation length'. After such change, the above property holds again.

  3. The voting mechanism for adapting the child generation length works as expected and in time.

Here we also have some more statistic properties to test and one needs to think about margins of validity

Pinning

  1. Pinning incentives are correctly implemented: correct pinning results in correct rewards.

  2. Pinning proof of inclusion can be verified by all stakeholders.

Non-productive stakers

  1. The mechanism dealing with non-productive stakers does not violate the other properties.(Possibly with distribution of leaders if we penalize.)

Parent chain compatibility

  1. The child-chain should be able to extract the necessary information from the parent chain. API testing.

Darts Dice Coins